Ponimban Fourier nopo nga' iso ponimban donsompuu (integral transform) it ogumu kopio ampos toi kounalan id mogikaakawo gana' lobi po id pongumbangan pandu dontuntuu (digital signal processing).

Ponimban diti poposimban do pandu mantad raung hiza (time domain) kumaa raung sinaru (frequency domain).

Pongomoi

simbanai

Montok iso pampos   ii kotuluk do nunung Dirichlet (Dirichlet conditions), ii sinimban Fourier nopo dau nga'   om ponimban Fourier do   tu' osimban no raung hingkaa  . Id siriba no ii govit pongomoi do ponimban Fourier:

 

om ponimban sambalik dau nopo,  

 

It ponimban Fourier nopo okito saagal do koromigan do rayat Fourier, id saau nopo it govit do koponutunan (representation) isoiso pampos id ngaan di tongo pamagat Fourier,  .

   

Soroho andasan gia di vaza pongomoi[1] ii pampos   nopo nga' pampos osompuu don Riemann (Riemann-integrable) om pampos osikap kumuri. Id sinalom diti komoon do pampos osikap kumuri nopo nga' nunu   ii kotuluk:

   

Bahazan

simbanai

Ingkaa no bahazan[2] timpou do ponimban Fourier kaanu popouhan do pongihiman ponimban Fourier do nunu pampos tosudong:

Tinulid (Linearity)

simbanai

 

Insir hiza (Time shifting)

simbanai

 

Insir sinaru (Frequency shifting)

simbanai

 

Panganatan hiza (Time scaling)

simbanai

  Pinili   pakayaan doid bahazan pomolik hiza:  

  1. https://ncatlab.org/nlab/show/Fourier+transform
  2. https://math.libretexts.org/Bookshelves/Differential_Equations/Introduction_to_Partial_Differential_Equations_(Herman)/09%3A_Transform_Techniques_in_Physics/9.05%3A_Properties_of_the_Fourier_Transform